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The Hypothesis  of Parallel Rod-l ike  Polypeptide Chains in Horse Hemoglobin*  

BY DOROTHY WRINOH 

Department of Physics, Smith College, Northampton, Mass., U.S.A.  

(Received 19 November 1952) 

In  the discussion of his three-dimensional vector map for the monoclinic horse methemoglobin 
crystal No. 5, Perutz made the first claim ever made tha t  there are rod-like structures in the vector 
maps of protein crystals. He also suggested a certain set of parallel rod-like polypeptide chains as 
the structure of horse hemoglobin. In  1952, three years later, a rather different set of parallel rod- 
like polypeptide chains was claimed as the structure of horse hemoglobin by Bragg, Howells & 
]~e~utz, the X-ray data  studied being confined to (0kl) intensities of relatively long spacings 
obtained from three monoclinic horse hemoglobin hydrates, including crystal No. 5. I t  is the pur- 
pose of this communication to study Perutz 's claim and the Bragg-Howells-Perutz structure and 
similar structures in the light of all the published vector maps of the monoclinic horse methemo- 
globin hydrates, including the three-dimensional vector map for crystal No. 5. From the study, 
it is concluded that  the vector rods claimed by Perutz do not, in fact, exist. I t  is further concluded 
that  there are, in these vector maps, indications tha t  the horse hemoglobin entity does not have 
the Bragg-Howells-Perutz structure or, indeed, any structure comprising a set of parallel rod-like 
polypeptide chains. 

1. I n t r o d u c t i o n  

In  1949 Peru tz  (1949) claimed t h a t  there exists, in 
his three-dimensional  vector  m a p  of horse methemo- 
globin, a set of parallel  rod-like s t ructures  ( 'vector 
rods') in vi r tue  of which the  presence, in the  crystal ,  
of sets of parallel  rod-like polypept ide chains con- 
s t i tut ing the  hemoglobin entities m a y  be asserted. He 
also proposed a par t icular  a r rangement  of polypeptide 
chains in parallel, with a 5 A repeat  along their  lengths, 
as the  s t ructure  of hemoglobin. Later ,  Bragg, Howells 
& Perutz  (1952) formulated  a r a the r  different set of 
parallel  rod-like polypeptide chains, also with a 5 /~ 
repeat  along their  lengths, for the  hemoglobin struc- 
ture. I t  is the  purpose of this communicat ion to 
examine (1) Peru tz ' s  claim, (2) the  Bragg-Howel l s -  
Perutz  s tructure,  and (3) similar s tructures,  with or 
without  5 A repeats,  in the  light of the  published 
projections and sections of the  vector  maps  of the  
monoclinic horse methemoglobin hydra tes .  

The horse methemoglobin crystal  'normal  wet ' ,  
upon which the  major  pa r t  of the  exper imental  work 
was done, is monoclinic, wi th  space group C2 and 
a = 1 0 9 ,  b = 6 3 . 2 , ~ c = 5 4 . 4  /~, f l =  111 °. I n  both  

hypotheses which have been formulated regarding the 
hemoglobin structure,  the  chains are set in the a- 
direction. B r a g g e t  al. (1952) suggested the  molecular 
pa t t e rn  shown in Fig. l (a)  with the  chains set on five 
' layers '  of a hexagonal  ne twork  of metr ic  b/6. The 
molecular pa t t e rn  suggested by  Perutz  (1949) in the  
earlier paper  comprised a four- layer  pa t t e rn  of some- 
wha t  the  same type.  

(a) We m a y  begin by  s tudying the  more recently 
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Fig. 1. (a) and (b), reproduced from Bragget al. (1952), show 
the suggested placing of rod-like polypeptide chains in the 
a direction, for a single hemoglobin entity and for the unit 
cell respectively. (c) shows the relative weights assigned 
to the various chains and (d) the vector map of this set of 
weighted points. (e) allows for the overlap of the vector 
maps for lattice points 0, 0, 0; 0, 1, 0; etc. and (f) for the 
overlap for lattice points 0, 0, 0; ½, ½, 0; 0, l, 0; etc. 
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formulated molecular pat tern  of parallel rods shown 
in Fig. l(a) and (b). In  Fig. l(d) we depict the vector 
map of these five 'layers' of chains projected normal 
to their length as there shown, following Bragg et al. 
in treating them as 'point scatterers of weights 1, ½ 
and ¼' multiplying all the 'weights' by 4 for con- 
venience. These 'point scatterers'  lie on the hexagonal 
network defined by the points y = 0 and b/6, z' = 0 ;  
y = b/12,  z ' =  bl/3/12. The vector map comprises a 
set of points of various weights on the same hexagonal 
network, now extended to cover the nine layers 
indicated in Fig. l(d), which we may  designate as 
0, ±1, +2, ±3, +4. Taking into account the over- 
lapping of vector maps at lattice points 0, 0, 0; 0, 1, 0; 
etc. and 0, 0, 0; ½, ½, 0; 0, 1, 0; etc., the weights are 
as shown in Fig. l(e) and (f) respectively. Over- 
lapping from neighboring lattice points in the direc- 
tion normal to b introduces a different hexagonal net- 
work: b1/3/12 is equal not to an ahquot part  of c sin fl 
but  to 0.18c sin fl and the layer +4  from one set hes 
between the layers - 1  and - 2  of the next, the layer 
+ 3  between the layers - 2  and - 3  and the layer +2  
between the layers - 3  and - 4 .  However, in the 
sequel we shall consider only the entries in the five 
central layers, 0, ± 1, ±2, since the entries in the layers 
±3 and ±4 are relatively small and amount alto- 
gether to less than 6 % of the total  of all the entries. 

We may, further, visualize the three-dimensional 
vector map, if we can visuahze the vector map of a 
single one of the chains, all of which are presumably 
being taken as identical apart  from their different 
'weights'. This is a complicated matter,  since the struc- 
ture of the vector rod depends upon the atomic pat tern 
of the chain and, in particular, on the specification of 
a 5 /~ repeat along its length. However, assuming 
simply a 'rod-like' chain, this structure will have a rod- 
like periphery of double its dimensions. With the 
chains assumed to be of length 60-70 _~, the 'vector 
rods' will be of length 120-140 A: since a = 109 A, 
they will overlap and extend throughout the crystal 
in the a-direction. 

Now that  we have an outline picture of the set of 
variously weighted 'vector rods' in parallel which 
emerges from the proposed structure in Fig. l(a), we 
are ready to test the structure by comparing this 
'synthetic '  vector map with the 'experimental '  vector- 
map projections and sections obtained by computation 
from observed intensities. 

(b) Before doing this we may turn to the earher 
paper, by Perutz (1949) alone. In this paper, formulat- 
ing a different molecular pat tern of rod-like polypep- 
tides parallel to the a-axis (presumably now superseded 
by  the pat tern just discussed), the main point of 
interest today is Perutz 's claim tha t  there exists in 
the experimental vector map the set of vector rods 
which, somewhat 'idealized', is shown in Fig. 2. These 
rods, we gather from the discussion (Perutz, 1949, 
pp. 485-6), have their axes along the lines y = 0, 
z = 0; y = ±7b/60 ,  z = ± c / 6 ;  y = ±b /6 ,  z = O. 

We remark that ,  in this set, three of the seven 
vector rods lie on vector rods shown in Fig. 1 derived 
from the Bragg-Howells-Perutz structure, while the 
remaining four are somewhat displaced from rods in 

Z 

Fig. 2. An 'idealized' picture of the set of vector rods which 
Perutz claims is present in his three-dimensional vector 
map of the horse methemoglobin crystal No. 5. (This figure 
is reproduced by permission of the Royal Society from 
Perutz (1949); the scale marks on the axial cross give 
.~mgstr6m units). 

this figure, with y = +7b/60,  z '  = +c sin f l /6 in place 
of y = ±5b/60, z' = +0.18c sin ft. Thus the set of vec- 
tor rods in Fig. 2, whose presence was claimed by  
Perutz in 1949, is not identical with, and is not, indeed, 
a subset of, the vector rods in Fig. 1 (d) whose presence 
is required by the structure proposed by Bragg et al. 
in 1952. The claim made in 1949 and the structure 
proposed in 1952 cannot both be correct. 

In the sequel, the evidence as to the presence or 
absence of this (b) set of seven vector rods in the 
experimental vector maps will be examined, side by 
side with the examination of the presence or absence 
of the (a) set of vector rods depicted in Fig. l(d). 

Quite apart  from difficult questions as to the 
correlation of the proposed set of rods in the actual 
crystal with this set of seven vector rods, this claim 
is of very considerable importance. I t  marked the first 
time tha t  a claim had ever been made tha t  there are 
in fact any vector rods in the vector map of any 
protein crystal. The careful examination of the argu- 
ments by which Perutz seeks to establish his claim 
thus constitutes an important  part  of the present 
investigation. 

Regarding the presence or absence of the set of vec- 
tor rods (a), there is no discussion in the literature. 
The only X-ray data  cited by Bragg et al. in support 
of their structure are the (Okl) intensities of relatively 
long spacings obtained by Boyes-Watson et al. (1947) 
from three of the monoclinic horse methemoglobin 
hydrates. However, the paper is prefaced by the state- 
ment tha t  the analysis 'is based on the assumption 
tha t  the protein molecule consists for the greater part  
of parallel polypeptide chains in a hexagonal packing 
with an inter-chain distance of 10.5 A', the only 
remaining questions with this viewpoint being which 
particular set of chains on this network should be 
selected and what their atomic configurations should 
be. Further,  it is stated later tha t  the structure pro- 
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posed is based 'on the chain interpretation of the 
Patterson diagrams, and is of significance only if it is 
correct'. In  diSCUssing the evidence regarding the 
existence in the vector map of the (a) set of vector 
rods, emerging from this structure, we can thus test 
the assumptions upon which the paper by Bragg e$ al .  

is based. 

2.  V e c t o r  p r o j e c t i o n s  

We begin by studying the projections of the two arrays 
of vector rods on the three vector projections calculated 
from observed intensities which were recorded by 
Boyes-Watson, Davidson & Perutz (1947). In  Fig. 3, 
all three projections are given, as in Fig. 3 of tha t  
paper. I t  is apparent that ,  on the basis of either set of 
vector rods, there should be a qualitative difference 
between the a-projection and the b- and c-projections. 

On the a-projection, small circles (confined to half 
the map so as to leave the other half in its original 
form) indicate the points into which the axes of the 
(a) set of rods project. We can also visualize the single 
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Fig. 3. Three vector  project ions of the  horse methemoglob in  
crystal  No. 5, reproduced by  permission of the  Royal  
Society f rom Boyes-Watson et al. (1947), on which lines 
and small circles have been drawn to show where the  axes 
of t h e  five central  ' layers'  of vector  rods shown in Fig. l ( f )  
He. 

hexagon of points into which the axes of the (b) set pro- 
ject. We remark the approach to the b / 6  hexagonal net- 
work of the high density regions over most of the map. 
But  the point y = b /6 ,  z '  = 0-36c sin fl of the (a) set 
misses the nearby peak (which is thus left unaccounted 
for) and there is little indication of the ratio of weights 
shown in the entries in Fig. l (f) .  

On the b-projection, the axes of the (a) set of vector 
rods project into lines parallel to a at z / c  = 0, 5=0.18, 
5=0-36, as indicated by the darker lines overlapping 
the cell boundaries shown over half the map. For the 
(b) set we would have the lines at z / c  = 0, 5=1/6. But  
there is no indication of the vector rods about any of 
these lines. The distribution of 'peaks' lacks any uni- 
axial character in the a-direction, or indeed in any 
direction. On the contrary, the distribution of high- 
density regions is closely associated with the nodes of 
a certain lattice. This fact, first pointed out by Crow- 
foot (1941), was stressed by Boyes-Watson et al .  (1947), 
who emphasized it by actually drawing the lattice 
seen on the map. Particularly interesting in connection 
with this essentially two-dimensional and definitely 
not uniaxial distribution of high-density regions is the 
distribution of 'peaks' nearest the origin. We remark 
no less than three pairs of 'peaks' at about 5 / ~  from 
the origin. These are in widely different directions 
from the origin, being approximately in a hexagonal 
arrangement. While the evidence against vector rods 
is already clear and unambiguous in this map, it is 
nevertheless interesting to notice (1) tha t  none of these 
5/~ peaks lies in the a-direction from the origin, where 
the 5 /~  repeat along the chains might be expected to 
manifest itself most strongly, and (2) tha t  chains with 
the 5 J~ repeat along the a-direction would not produce 
5 / ~  peaks in other directions. 

Looking now at the third projection, the c-projec- 
tion, we see the lines 1 2 y / b  = 0, 1, . . . ,  6 into which 
the axes of the foreshortened rods of the (a) set 
project, and we can visualize the lines for the (b) set. 
Again we reach the same conclusion. I t  is evident tha t  
this vector map lacks any uniaxial character in the 
a sin/7 direction or in any direction, as was indeed 
earlier recognized by Boyes-Watson et al .  (1947) in 
their statement tha t  ' the most prominent features of 
the c-projection are two rings of peaks at 10-11 and 
20-22 A from the origin'. 

To sum up the situation, we may  notice tha t  the 
expected qualitative difference, between the a-projec- 

tion on the one hand and the b- and c-pr0]ecti0ns on 
the other, has not materialized. Studying the halves 
of the maps left in the original state, our impression 
is rather of .a general resemblance between all three. 
We can only conclude that,  so far as these projections 
are concerned, evidence which might have been ex- 
pected if the structure proposed by B r a g g e t  al .  is 
correct, is lacking. We also have to conclude tha t  there 
is no evidence in these projections of the vector rods 
pictured in Fig. 2. If we re-read the argument, we see 
tha t  a far wider statement on the same lines can be 
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made. Evidence which would be expected for any  set 
of parallel  rod-like polypep~ide chains in any  direction 
in  the hemoglobin crystal  has  failed to materialize. 
There are, in fact, no indications of the presence of 
'vector rods'. 

However, i t  is not  necessary to rely exclusively on 
the evidence of these three projections. I t  is a striking 
feature of Perutz 's  long-term X-ray  studies of horse 
hemoglobin tt iat  no less t han  twelve hydra tes  of this  
protein were studied (Boyes-Watson et al., 1947). Of 
these twelve crystals, ten  are monoclinic. And  of the  
ten, five crystals, :Nos. 3-7 have  the  same a and b 
parameters ;  and of these five, the 'normal  wet '  crystal  
is No. 5. 

In  Fig. 4 of their  paper  Boyes-Watson et al. (1947) 
record the vector projections along the dyad  axis for the 
sequence of crystals 3-7 superimposed two at  a t ime. 
In  each case we see tha t  there are peaks at about  5 / ~  
from the  origin, though never in  the a-direction. 
Further ,  there is still no sign of the uniaxia l  distribu- 
tions of vector densi ty expected for either the (a) or (b) 
set of vector rods. Indeed, the  superpositions of the  
maps  focuses at tention,  even more s tr ikingly t han  the  
earlier figures, on the  general characteristic of all the  
vector projections so far studied, the fact tha t  there 
are .high-density regions at about  9-11 A disposed 
around the origin in every case, as Boyes-Watson et al. 
(1947) remarked.  The conclusion seems inescapable:  
whatever  the  na ture  of the structures in the horse 
methemoglobin  crystal  m a y  be, i t  mus t  be such as to 
explain (1) the 5 A peaks in various directions (not 
the  a-direction) in the  b-projections, and (2) the 
existence of h igh-densi ty  regions at  say 9-11 J~ from 
the origin in m a n y  different directions, for projections 
of the normal  wet crystal  in  the  a-direction and in 
the c-direction, and  now for projections of all five 
hydra tes  in the  b-direction. Tha t  no set of rod-like 
structures in the a-direction, normal  to the b axis, 
can provide an explanat ion of either of these features 
in the case of any  of the set of b-projections seems clear. 

3. The three -d imens iona l  vector m a p  

We have already, in Fig. 3, reproduced some of the 
vector projections which have been publ ished for horse 
methemoglobin,  bu t  the major  par t  of the 'vector '  

evidence available regarding the structure of methem0. 
globin still remains to be discussed. In  1949, Perutz 
(1949) publ ished certain sections of the three-dimen- 
sional vector dis t r ibut ion for t ha  normal  wet No. 5 
crystal, and in fact, used this map  in advancing his 
claim tha t  the vector rods in Fig. 2 are present.. De- 
duced by  computat ion from some 7000 independent  
relat ive intensities, this  vector map  represents the 
most detailed da ta  regarding any  crystall ine protein 
ever obtained. 

In  Figs. 4 and 5 all the  published sections of this 

three-dimensional  m a p  are shown.* In  :Fig. 4, the  
complete central  sections normal  to a and containing 
the a and b axes and  13 of the 31 half-sections normal  
to the dyad  axis, namely  the sections 60y/b = 0, 1, 
. . .  12 for x = 0 to ¼a, given by  Perutz  (1949), have  
been assembled. In  Fig. 5 we add the complete y = 0 

A 

Fig. 5. The complete central section y = 0 of the vector  map, 
obtained by  repeating section given by  Bragg et al. (1950) 
about the dyad  axis. On it lines have been drawn, as in 
Fig. 4, section y = 0. 

section publ ished a year  later  b y  Bragg, Kendrew & 
Perutz  (1950). As in  the previous discussions, we 
indicate the positions of the  vector rods of the (a) 
set by  indicat ing the positions of their  axes in various 
sections. Thus for the central  section normal  to the 
direction of the rods, the section normal  to a, we have  
a hexagonal  network indicat ing the points  at  which 
the axes of the rods pierce the section. On the  (a b) 
central  section and  the  (a c) sections, lines indicate 
the  axes of vector rods. 

Scrutinizing these sections, our a t tent ion is straight- 
way  r iveted by  two outs tanding features, as we have  
earlier pointed out (Wrinch, 1952a, b). The first  is 
' the 5 A shell '  wi th  the  description of which Perutz  
begins his account of the map,  a region of no tab ly  
high vector densi ty  at  4-6 A from and completely 
surrounding the origin, as we see in  the  sections 0-5 
as well as in the remaining two central  sections. Within ,  
this  shell is bounded by  a broken contour, indicat ing 
tha t  here the vector densi ty  has a value equal  to the  
average for the uni t  cell.'[" Jus t  inside the shell there is, 

* The author is very greatly indebted to Dr Perutz for the 
loan of the Hollerith sheets giving this three-dimensional 
vector map in its entirety, in October 1951. In this preliminary 
examination of the vector map, only the published sections 
of the map are discussed. 

Perutz's vector function depicted in :Figs. 4 and 5 is the 
Fourier transform of his relative intensities, taking the in- 
tensity at the origin to be zero. The actual vector function 
is therefore a linear function of this vector function. When 
Perutz's vector function takes zero values, as shown by the 
broken contours in the map, the actual vector function takes 
its average value for the complete unit cell. When it takes 
positive values, the actual vector function has higher-than- 
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therefore, a region of lower-than-average densi ty  which 
begins at about  3 J~ from the origin, if we m a y  judge 
from the section in Fig. 5 (on which alone the onset 
of the region is marked).  This 'low densi ty '  shell, at  
3--4 A from and completely surrounding the origin, 
is the second str iking feature of the vector map.  In  
studies of the vector map,  in and for itself, wi thout  pre- 
suppositions, which have the objective of eliciting 
from it  direct indicat ions regarding the nature  of the 
structures in the crystal,  the  in terpre ta t ion of these 
two features na tu ra l ly  takes the center of the stage 
from the outset of the enqui ry  (Wrinch, 1952a, b). 
In  the view of the writer, there is l i t t le doubt  tha t  any  
discussion of the map  which neglects to give a specific 
in terpreta t ion to these two features will necessarily 
result  in conclusions which are incorrect. However, 
we will first proceed merely  to s tudy  the nature  of the 
vector dis t r ibut ion in the regions which should be 
occupied by  the vector rods, paying  as little a t tent ion 
to these two features as possible. Since the vector rods 
supposedly lying along the a-axis ac tual ly  intersect 
both the low-density shell and  the high-densi ty  shell, 
we have  then  to confine our at tent ion,  for the t ime 
being, to the case which can be made out for the 
presence in the vector map  of the (a) and (b) sets of 
vector rods, excluding the central  rods. 

We m a y  begin with the sections normal  to the  dyad  
axis. Since the metr ic  of the network of the (a) set of 
rods is b/6, axes of the rods will lie only on sections 
0, ±5,  ±10, ±15, ±25, 30 of the set of sections at 
60ths of b. Accordingly, we see on the sections of 
Figs. 4 and  5 only five axes, which include the a-axis 
of the central  rod to be discussed later. Taking the 
rods in order of increasing distance from the central  
rod, we begin with two sets at  b/6. Axes of the rods I 
lie at  z'/c sin fl = ±0.18, 60y/b = ±5,  as indicated on 
map  5: axes of the rods I '  lie at  z = 0, 60y/b = ±10,  
as indicated on map  10. We remark  tha t  the two rods 
of set I '  belong also to the (b) set of rods shown in 
Fig. 2. The other four non-central  rods of the (b) set 
m a y  be regarded as the I set somewhat  displaced, with 
axes now at  z'/c sin fl = ±1/6,  60y/b = ±7.  Next  there 
is set I I  at  bV3/6 from the  central  rod with axes along 
z'/c sin fl = ±0.36, y = 0, as indicated on map  0 (in 
Figs. 5 and 4). F inal ly ,  there is the set I I I  at  2b/6 
from the central  rod, with axes at z'/c sin fl = -]-0-36, 
60y/b = ±10, as indicated on map  10. Supplementa ry  
informat ion concerning the I '  set (and the central  rod) 
is given by the central  (a b) section. Supplementa ry  
informat ion concerning all of these rods, and the only 
informat ion regarding all the remaining rods of the (a) 
set, is contained in the central  section normal  to a. 

If  the diameters  of the supposed rods in the crystal  

average  va lues ;  when  it  t akes  nega t ive  values,  the  ac tua l  
vec to r  funct ion  has lower - than-average  values.  The  zero level 
on the  m a p  thus  is in no sense an a rb i t r a ry  level, as P e r u t z  
(1949) asser ts :  it has  a direct  and  i m p o r t a n t  phys ica l  signifi- 
cance.  These aspects  of the  vec to r  m a p  are discussed more  
ful ly  elsewhere (Wrinch,  1952a, b, also unpubl i shed  work).  

are even as large as (say) 5 A, the  vector rods with 
radius 5 A or more will cut each and every section 
shown; those with axes on 0 will cut at  least the maps  
1, 2, 3 and 4, those with axes on map  5 will cut at  
least the maps  1-9: those with axes on map  10 will 
cut at  least the maps  shown in the figure from 6 
onwards. But  how is i t  possible, in these sections, to 
make out any  clear-cut case in favor of rod-like 
distr ibutions to correspond to any  of these four non- 
central  rods ? 

VChen we look for the vector rod I whose axis lies 
on the line z/c = 0.18 on section 5, we see a high- 
densi ty mass on this line but  only near  the center of 
the section, and as much  can be claimed on sections 
6 and 7 ; but  i t  is surely impossible to claim any  general 
high densi ty dis t r ibut ion about  this line in sections 
4 or 3 or 2 or 1. For  the (b) set, the  rod is displaced so 
tha t  its axis lies along the line z/c = 1/6 on map  7. 
Here and on adjoining sections the concentrat ion of 
peaks on or near  this  line is perhaps a li t t le more 
convincing. But  again the m a n y  regions of below- 
average densi ty make the case in favor of the presence 
of the rod very  weak. If  we look for evidence of the 
rod I ' ,  belonging to both the (a) and (b) sets, with its 
axis along the line z = 0 on map  10, we see some high- 
densi ty  regions but  large intervals  of below-average 
densi ty  between. Examin ing  the adjoining maps  11 
and 12, no confirmation of the  presence of t h e  rod 
appears. There remain  only two other axes on this 
series of sections. One is the axis of rod I I  along the 
line z/c = 0.36 on the central  section shown in Fig. 5. 
On and about  this  l ine we see tha t  any  high-densi ty  
regions tha t  are present  are very  much  interrupted,  
tha t  there are, in fact, m a n y  regions of below-average 
density.  Studying the same line in the sections on 
either side of the central  section, i.e. in the identical  
sections 60y/b = +1, 60y/b = +2, et seq., we must  
surely conclude tha t  any  idea tha t  we can trace the 
impr in t  of this  vector rod has to be abandoned.  
Final ly ,  we look for the rod I I I  with its axis along the  
line z/c = 0.36 on m a p  10. Scrutinizing the vector- 
densi ty  dis t r ibut ion about  this  line we see only a region 
of p redominan t ly  below-average density,  interspersed 
with a few regions which are s l ightly above-average 
in density.  The hypothesis  tha t  there is a vector rod 
about  this  line receives l i t t le support  in this  section, 
still less in the adjoining sections. We therefore have  
no choice but  to regard the case in favor of the presence 
of non-central  vector rods of the (a) set or of the (b) 
set as ext remely  frail, so far as the sections normal  to 
the dyad  axis are concerned. 

Turning to the two remaining  sections, the central  
(a b) section and the central  section normal  to a, 
there seems lit t le chance of bolstering it. Thus, looking 
at  the  central  (a b) section, apar t  from the central  rod 
lying along the lines y = 0 and ½b, there is only the I '  
rod about  which any  informat ion can be gleaned. 
I ts  axis lies along the  line y/b = 1/6- -a  line a l ready 
studied on the section 60y/b = 10- -and  continues 
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along the line y/b = 1/3 about which we have no pre- 
vious information. But  this new information amounts 
only to 'the observation tha t  the vector density on and 
about this line is predominantly below-average. About 
the line already studied there is in this section little 
to confirm the presence of the vector rod. However, 
interestingly enough, we get the definite impression 
that  the regions of high density which undoubtedly 
occur on the line near the center on either side, as we 
saw in map 10, belong to a system of widely spread 
high-density regions which fill much of the space at, 
say, 9~-15 A from the origin. Thus, on these two cen- 
t ral  sections, we have one and the same impression: 
tha t  much of this region, in very many different 
directions from the origin, is above-average in density. 
Going over the maps 0--12 once again, we find regions 
of high vector density within a spherical shell ex- 
tending from, say, 9~ to 15/~ in every single section. 

I t  remains only to s tudy specifically the vector- 
density distribution in the central section normal to 
the a-axis on and near the whole set of points at which 
axes of the (a) set of vector rods cut this section, as 
indicated by the hexagonal network drawn on par t  
of this section, and to make a corresponding s tudy for 
the points for the (b) set. We remark tha t  most of the 
(a) set of points fail in or very near regions of below- 
average density. The only points of the (a) set which 
lie in or very near regions of fairly high vector density 
are the points for rods II,  namely y = O, z'/c sin fl = 
±0.36, and for rods I, namely y/b = ±5/60, z'/c sin # 
= ±0.18. I t  is interesting to notice tha t  the situation 
is somewhat improved when these rods I which emerge 
from the Bragg-Howells-Perutz structure are restored 
to their original positions in the (b) set with axes 
through the point y/b = ±7/60, z'/c sin fl = ±1/6. That  
the points for the remaining rods of the (b) set (called 
B rods by Perutz), which are also the rods I '  of the (a) 
set, namely y/b = ±1/6, z' = 0, lie in relatively low 
density regions is clear, as Perutz himself pointed out. 
His comment runs as follows" ' I t  seems surprising tha t  
no maximum appears in the positions where the rods 
B cross the section, but  Fig. 19 shows tha t  this rod 
actually has a minimum at z = 0' (Perutz's fig. 19 is 
obtained by  superposing maps 9, 10 and 11 seen in 
:Fig. 4). I t  may  however, be suggested tha t  the com- 
ment might more reasonably be to the effect that ,  so 
far as these sections are concerned, the evidence is 
tha t  there are no B rods in the vector map and tha t  

the case for the B rods must be made, if at all, on 
evidence from other sections. Actually the only other 
evidence has already been studied. 

We now conclude our unsuccessful search for evi- 
dence, in the sections of the three-dimensional vector 
map in Figs. 4: and 5, of the presence of the original 
(b) set of non-central vector rods claimed by Perutz 
and of the (a) set of non-central vector rods whose 
presence is required by the Bragg-Howells-Perutz 
structure. Before passing on to the second phase of 
the investigation, we may  consider whether, with 

another choice of positions for vector rods a case for 
their presence could have been made out. A general 
survey of the sections suggests tha t  this is not so, 
even with a change in the direction of the rods. 

We may  then turn to the remaining issue, namely 
the possible presence of vector rods actually on the 
a-axis. This further issue has to be discussed to com- 
plete our formal investigation of Perutz 's claim and of 
the Bragg-Howells-Perutz structure, even though we 
now know in advance tha t  little supporting evidence 
relating to any accompanying set of vector rods is to 
be found. 

We see the imprint of the axis of the rod on the line 
z = 0 of the central (a c) section, y = 0, in Fig. 5 and 
on the line y = 0, continuing along the line y = ½b 
of the central (a b) section, z' = 0, in :Fig. 4. We are 
now rapidly approaching the moment when the 3-4 A 
low-density shell and the 4 -6 /~  high-density shell can 
no longer be disregarded since the supposed central 
rods cut directly across both of them. However, let us, 
for the time being, still look specifically for any other 
evidence there may be of the existence of the central 
rods, the last of the (a) and (b) sets to be considered. 

Accordingly we examine the nature of the vector- 
density function along and in the neighborhood of the 
a-axis, looking for what Bragge t  al. (1950) describe 
as 'a somewhat irregular but  clearly marked rod of 
density . . .  through the origin and parallel to the 
a-axis, such as would be produced by the vectors 
between atoms of polypeptide chains running in this 
direction'. 

Scrutinizing both the (a c) and (a b) central sections, 
we certainly do find numerous peaks on or near the 
a-axis. However, if any a t tempt  is to be made to 
trace a vector rod of considerably more-than-average 
density the nature of the regions between and about 
the peaks has to be taken into account. We see in the 
(a b) central section and the (a c) sections through 
and near the origin tha t  much of the terr i tory about 
the a-axis, and some of the terr i tory actually crossing 
it, is negative, indicating tha t  the vector function 
there has values which are not merely lower than  on 
any of the peaks but values which are below the 
average value for the whole crystal. In  these circum- 
stances, is it possible to claim the existence of central 
vector rods along the a-axis ? Certainly the case for 
making this claim is very frail. 

Postponing the final answer to this question, we 

may now take into consideration the fact that it is not 
merely any vector rod which is being looked for; in 
view of the 5 J~ periodicity characterizing the postu- 
lated rod-like polypeptide chains, we are looking 
specifically for a rod bearing some manifestation of 
this periodicity, i.e. for some signs of a 5 /~  periodicity 
along the a-axis and only along the a-axis. 

Looking now at the high-density regions along the 
a-axis in more detail, we s tudy first the four peaks 
within a single complex, marked a by Perutz on maps, 
0, 1, and on the (a b) section. We see tha t  they  lie at, 
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say, 11.3, 17.2, 21.8 and 26.3 A from the origin, 
agreeing only very roughly with Perutz 's  claim (1949, 
pp. 488-9) tha t  they  lie at  5 A intervals. However, 
let us assume for the moment tha t  these a-peaks may  
be regarded as vector interactions between pairs of 
atoms in the postulated rod-like polypeptide chains 
at  distances apart  corresponding to 2, 3, 4 and 5 times 
the basic repeat. We also see tha t  this succession of 
peaks at, very roughly, 5 A apart,  continues there- 
after, to correspond, we have to assume, though only 
very roughly, to vector interactions of pairs of atoms 
at  6, 7, . . .  times 5 /~ apart. I t  should, however, be 
pointed out that  there are at  least two further features 
which challenge the correctness of this assumption. 
The heights of the peaks, even in the a-group, do not 
decrease monotonically to correspond to the neces- 
sarily decreasing numbers of pairs of atoms at  distances 
apart  corresponding to increasing multiples of the 
basic distance. Further,  there are the peaks spreading 
around the origin in a large arc from the a-peak at  
about 11-3 /~ from the origin (cf. Fig. 5) evidently 
forming, as it seems to the writer, part  of the system 
of widely spread high-density regions filling much of 
the space, say 9~--15 /~ from the origin, which we 
have already noticed in all the other sections. We are 
not looking for peaks spread in an arc around the 
origin. These peaks, marked b by Perutz (cf. map 0 
in Fig. 4), constitute an unwanted feature. 

4. The  nature  of the vector m a p  in the 
ne ighborhood  of the or ig in  

I t  remains only to consider the manifestation of the 
supposed polypeptide chains with their 5 A periodicity, 
which is to be expected in the vector map near the 
origin. I t  may be described as follows: a vector function 
with a pronouncedly uniaxial character--with respect 
to the a-axis--even very close to the origin, which 
develops, at  about 5 A from the origin, on or very 
near the a-axis, a well localized peak, somewhat higher, 
though not grossly higher, than the other peaks on the 
a-axis already discussed. 

I t  is at  this point tha t  we can no longer exclude 
from consideration the features which dominate the 
experimental vector map in the neighborhood of the 
origin, the 3-4 /~ low-density shell and the 4-6 A 
high-density shell with its intricate morphology map- 
ped by the contour surfaces. They are excluded from 
discussion by Perutz, who confines himself to a refer- 
ence to ' the 5 /~  vector peak along the chain direction' 
and in his 'idealized' vector rods, reproduced in Fig. 2, 
shows only this feature with the rest of the 5 /~ shell 
which is found in his experimental vector map re- 
placed by an essentially cylindrical distribution. 

Looking carefully at the sections 0-7 and the two 
other central sections of the vector map in Fig. 4 we 
see not only the S 1 peak, to which Perutz does refer, 
but also four other pairs, the S 2 and the S pairs and 
the two S~ pairs, so named by Perutz himself. We see, 

around the origin in the central section normal to the 
'chain direction', a 4 - 6 / ~  ring of high density, a ring 
which is very similar to the 4 -6 /~  ring of high density 
seen in the other two central sections which both con- 
tain the 'chain direction'. Above all, we see the shell 
enclosing these five pairs of peaks and itself comp]etely 
surrounding the origin, and the inner low-density 
region, also a shell completely surrounding the origin. 
In S 1 we have evidence of many pairs of atoms at 
about 5 /~  apart, set to one another in directions not 
far from the a-direction. However, in the shell we have 
evidence of a relatively large numbers of pairs of atoms 
at  4-6 A apart, set to one another not only in these 
directions but  in all directions, numbers sufficiently 
large to account for the whole of this origin-circum- 
scribing region being positive, i.e. of density above the 
average for the crystal. And in the 3-4 /~ region we 
have, correspondingly, evidence of relatively small 
numbers of pairs of atoms at 3 -4 /~  apart,  set to one 
another in all directions, numbers sufficiently small 
to account for the whole of this origin-circumscribing 
region being negative. Evidently,  then, it may be 
claimed tha t  the expected signs of the presence of the 
chains with their 5 A repeat, in the a-direction and 
only in the a-direction, have failed to materialize. 

The situation may, then, be summed up very simply. 
Even when the experimental vector map is studied 
only from the origin up to about 6 A, the following 
information can be gleaned. By and large, the local 
architecture of the individual structures in the crystal 
is such tha t  atoms at  distances apart  covered by this 
range of lengths are not arranged uniaxially with 
respect to any direction, nor for tha t  mat ter  biaxially. 
On the contrary, they are arranged in an essentially 
three-dimensional manner. Such a range of lengths 
covers nearest neighbors in covalently bonded struc- 
tures, also second nearest, third nearest and even more 
remote neighbors; it further covers pairs of atoms held 
in a hydrogen bridge, and indeed first, second and some 
third nearest neighbors in any hydrogen-bridged arrays 
of atoms which may be present in the crystal. With an 
essentially three-dimensional distribution of the vec- 
tors between atoms and their neighbors within, say, 
a 6 A sphere, and, indeed, no uniaxial character in the 
vector map as a whole, we can finally conclude tha t  
there is no confirmation of the hypothesis of rod-like 
polypeptide chains in the crystal. 

5. Conclus ions  

Our limited objectives in this communication have 
already been defined. They relate to the existence of 
the vector rods claimed by Perutz in 1949 and to the 
light thrown by the vector maps on the possibility 
tha t  horse hemoglobin has the Bragg-Howells-Perutz 
structure or any similar structure comprising parallel 
polypeptide chains. 

Regarding the first issue and part  of the second and 
third issues, conclusions may  now be drawn. There is 
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no case for the existence of Perutz's set of vector rods, 
or of the (a) set of vector rods, or of any set of parallel 
vector rods, either in the vector projections first 
discussed or in the three-dimensional vector map which 
has now been examined in some detail, especially in 
the neighborhood of the origin. 

A final conclusion regarding the second and third 
issues requires a decision on one further point. Claim- 
ing the non-existence of the vector rods emerging 
from the Bragg-Howells-Perutz structure or any 
similar structure, can we proceed to claim that  all these 
structures for horse hemoglobin are to be rejected? 

Before answering this question, one other must be 
posed. Less than half the volume of this heavily 
hydrated protein crystal is protein (Boyes-Watson 
et al., 1947). Is it, then, possible to take the line that  
the rod-like polypeptide chains may be present and 
yet fail to indicate their presence ? Can we perhaps 
say that  the presence of such structures, while not 
confirmed, is not disproved ? To maintain this view- 
point, we would have to advance a certain hypothesis 
about the distribution of the additional vectors brought 
in when the water complement is considered. These 
additional vectors comprise 'water-water'  vectors be- 
tween atoms of the water molecules and 'water- 
protein' vectors between an atom of a water molecule 
and an atom in one of the postulated polypeptide 
chains. The hypothesis which has to be advanced is that  
these additional vectors are of such a nature that, 
superposed on the rod-like distribution of protein- 
protein vectors, an essentially three-dimensional distri- 
bution, with no uniaxial quality in any direction, 
results, in particular in the 3 -4 /~  and 4-6 J~ ranges. 
Assuming that  the protein structures which co-opt 
the water molecules to facilitate crystallization com- 
prise sets of parallel rod-like chains, there is no reason 
to suppose that  the water-protein vectors would yield 
a distribution of this kind. Regarding the water-water 
vectors, an accentuation of the rod-like quality of the 
vector distribution or, at best, an essentially three- 
dimensional distribution would be expected. That the 
superposition of the additional vectors should change 
vector rods along the a-direction or any other direction 
into a high-density shell in the range 4-6 A and a low- 
density shell in the range 3-4 A is an untenable view- 
point. 

I t  seems, therefore, that  it is not possible to take 
the line that  there are parallel polypeptide chains in 
the crystal and that  the absence of the vector rods 
near the origin can be explained in terms of protein- 
water and water-water vectors. In other words, the 
nature of the vector-density distributions, as seen in 
the vector-map sections shown in Figs. 4 and 5 and 
the vector projections in Figs. 3 and 4, indicates that  
there are no sets of parallel rod-like structures in the 
methemoglobin crystal, in the a-direction or, indeed, 
in any direction. I t  follows that  the successful inter- 
pretation of the vector map is not a question of a 
successful choice of a dfl'ection for a set of parallel 
rod-like polypeptide chains (Perutz, 1949), a success- 
ful choice of the number and positions of the chains 
in such a set (Perutz, 1949; Bragget  al., 1952), with 
the only remaining issue the formulation of configura- 
tions which the polypeptide chains may 'reasonably' 
be expected to assume (Bragg et al., 1950) and the 
consequent successful choice of one of them (Wrinch, 
1953). 

We are then faced with the fact that, in the case of 
horse hemoglobin, the classical theory that  a protein 
entity is made up of a set of parallel rod-like polypep- 
tide chains has to be abandoned. The next communica- 
tion in this series will take a different tack and will 
further develop the attempt to elicit from the vector 
map, particularly in the neighborhood of the origin, 
direct indications regarding the nature of the structures 
in the horse methemoglobin crystal (Wrinch, 1952a, b, 
1953). 
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